Creating High Performance Clusters for Embedded Use

The Hype.....

The Internet of Things has the capacity to create huge amounts of data
Gartner forecasts '35ZB of data from things by 2020' etc

Putting the numbers to one side, we have seen a trend to:

- > Provide more locally based filtering
- Execute preliminary data analysis, sometimes this is very complex
- Deliver an interim result
- Examples include oil and gas surveying and Improvised Explosive Device (IED) image recognition
- **Desire is for supercomputer performance in the size of a shoebox**

High Performance Computers (HPC)

- Trend for massively parallel distributed architectures
- Heterogeneous architectures: CPU and GPGPU
- **Use high speed interconnects:**
 - Proprietary 2D and 3D Torus
 - Infiniband or Ethernet
- Size, Weight and Power are not particularly important criteria. Neither is Cost!

For use in Embedded applications other factors dictate compromises:

- >Size, Weight and Power(SWaP)
- > Operating Temperature
- Granularity
- Ruggedness
- >Open-ness

This is really why standards like VPX exist

Other considerations:

- More Real Time
- Deterministic
- Low Latency

Results in seconds and minutes rather than weeks or months

HPEC Implementations – Form Factor

Lots more choice and complexity today

Serial Fabrics - not so simple

Typical VPX system showing multiple processing elements

Communication across appropriate fabrics

- The interconnect between servers is typically Ethernet based
- Software packages from the HPC space tend to use TCP/IP socket APIs running on a Linux OS
- A good example of this is Hadoop which is an open framework for distributed processing of large data sets across clusters of computers
- The challenge has been how to utilize this ecosystem of applications in an embedded environment where PCI Express or RapidIO fabric interconnects might be used

Our solution: FIN-S

- Emulates an Ethernet device over PCI Express or RapidIO
- From an application perspective, the interconnect is seen as an Ethernet network running over TCP/IP
- This shields the application from the underlying fabric and allows some useful side benefits:
 - > Improved throughput with PCI Express and RapidIO (slide 11)
 - > CPU utilization reduction (slide 12)
 - > Best latency with RapidIO (slide 13)

FIN-S Diagram

Comparison was done using:

- Processor board with a 10 Gigabit Ethernet adapter connected via a x8 Gen2 PCI Express link
- Processor board running FIN-S on a PCI Express Gen2 x4 fabric across the backplane
- Processor board running FIN-S on a RapidIO Gen2 (5 Gbps) x4 fabric across the backplane

Throughput vs Packet Size

CONCURRENT CONCURRENT CONCURRENT CONCURRENT

General Information

CPU Utilization vs Packet Size

Latency

Example Implementations

- 4 x AdvancedMC Modules, AM 945/x1x AdvancedMC modules based on Intel i7-3612QE
- **RapidIO** fabric
- **1U DCCN proof of concept box**

- **PCI Express fabric**
- 6 slot 3U VPX Development System

Key is that we can demonstrate consistent results using the same application

Summary

There is a real need to provide HPEC solutions

Customer expectations are increasing:

- Increased bandwidth
- Reduced SWaP (and cost)
- Lower Latency and Deterministic Performance
- Easier to Scale
- Leveraging relevant software from the commercial space

FIN-S is one solution that can allow customers to base HPEC solutions on RapidIO and PCI Express fabrics without significant change

Thank you for listening

